PROFESSIONAL DEVELOPMENT CONSIDERATIONS FOR MAKERSPACE LEADERS: "WHAT?", "WHY?" AND "HOW?"

발표자: 지현경

INTRODUCTION

- 2017년 11월 중기부 발표 '한국 형 메이커스페이스 확산 방안'
- 전국 창작공간 65개소 확보 (I0월 부 운영 시작) – 민간기업, 협동조 합, 도서관 등 다양한 운영주체 구 성
- 22년 까지 전국 350여개 공간 확대를 통한 민간중심의 자생적 메이커 생태계 조성 계획

중기부, 창작공간(메이커 스페이스) 10월부터 운영

○ 이민호 기자 () 승인 2018,07,23 16:15 () 댓글 0

창의적 아이디어 구현을 위한 창작활동 공간이 확충됨에 따라, 메이커 운동이 전국적으로 확대될 전 망이다.

최근 중기부는 지난해 11월 발표한 '한국형 메이커 스페이스 확산방안'의 후속 조치로 전국 공모를 통해 창작공간(메이커 스페이스) 65개를 선정했다.

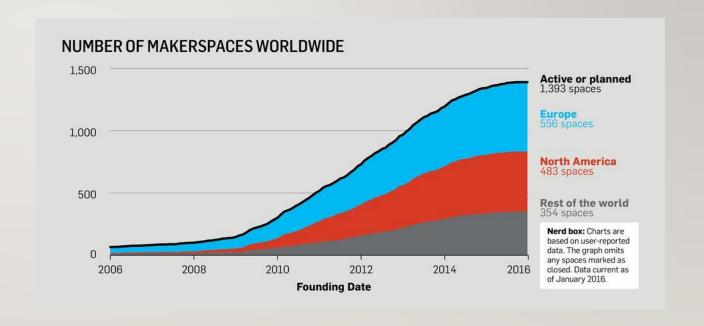
선정기관은 일반형 60개와 전문형 5개로 구분되며, 공간 리모델링 및 장비 구축 완료 후 10월부 터 본격 운영된다.

일반형 공간은 일반 국민을 대상으로 메이커 입문 교육, 창작활동 체험 프로그램 등을 제공하며 2.5억 원 내외로 공간·장비 구축 및 프로그램 운영비용이 지원된다.

전문형 공간은 시제품 제작 등 전문적인 창작활동을 비롯해 기존 창업 인프라를 연계한 사업화 지원 및 지역 메이커운동 확산을 위한 거점 기능을 수행한다. 지원 예산은 30억 원 내외다.

지역	기관명	주요 지원내용
서울	서울산업진흥원	서울 금천구 산업단지를 기반으로 지역 중소기업과 연계 청년 제조창업과 기업의 제조혁신 촉진
광주	전남대학교산학협력단	호남 및 제주권 메이커 문화 확산과 전문메이커 시제품 제작을 통한 사업화 프로그램 운영
서울	고려대학교 <u>산학협력</u> 단	안암동 창업문화 캠퍼스타운과 연계한 다양한 메이커 프로그램 운영을 통해 산학협력 모델 구현
서울	(주)엔피프틴	디지털 대장간 운영 노하우를 바탕으로 우수 아이디어 발굴에서 시제품 제작·양산까지 일괄 지원
대구	경북대학교 산학협력단	동대구벤처밸리 입지 장점과 <u>크리에이티브팩토리</u> 운영 노하우를 바탕으로 전문메이커 양성

전문형 5개기관 및 기관별 지원내용


(출처: http://www.sanhak.co.kr/news/articleView.html?idxno=483)

INTRODUCTION

• 북미/유럽 등지 메이커스페이스 1500여개소 이상 운영 중

• 담당 교수자의 메이커스페이스 관련 테크놀로지, 운영 이슈, 교육 학적 사전 지식과 교육이 필요한 시점(Hira et al., 2014)


SCOPE OF MAKERSPACE

- Makerspaces's core tenets
 - Self directed according to student interest
 - Supportive of curious play and creating with tolerance for failure and retrial
 - Encouraging of peer collaboration and sharing skills between experts and novices
 - Physically-sited and open for ongoing project work that is both scheduled and unscheduled
 - Well-stocked with sourced materials for project work

PROJECT SPECIALTY AREAS COMMONLY FOUND IN MAKERSPACE

- 기계/장난감 분해-재설계 작업 / 회로 만들기 활동
 - 기계의 복잡한 구조 및 기초적인 기계 역학을 이해

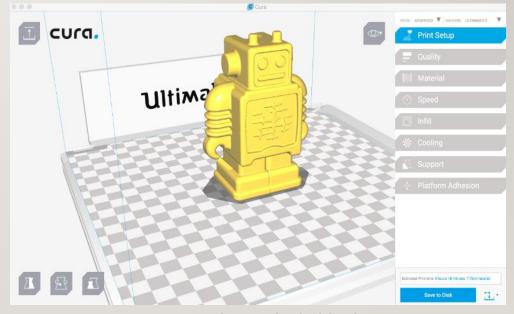
LightUp 의 AR을 활용한 키트 활용 화면

SnapCircuits 의 회로 모형 키트

PROJECT SPECIALTY AREAS COMMONLY FOUND IN MAKERSPACE

- 로봇 및 회로기판에 연결 된 프로그래밍 활동
 - 간단한 프로그래밍 및 문제해결 학습 가능

Scratch 를 활용한 로봇 프로그래밍


LEGO-based robotic kits

PROJECT SPECIALTY AREAS COMMONLY FOUND IN MAKERSPACE

- 3D 프린터, 디지털 기기를 활용한 제작 활동
 - Google SketchUP, Cura 등의 소프트웨어 및 모델 활용

Google SketchUP 소프트웨어

Cura의 모델링 화면

CURRICULUM IN THE MAKERSPACE

- 학교 수업 커리큘럼과 병행할 수 있는 메이커스페이스 운영 전략 필요
 - 메이커스페이스 수업 설계 과정에 따라 콘텐츠, 스킬, 수업 자료, 수업에서 제시할 퀄리티 있는 질문과 문제를 제시해야함

Maker projects and tools	Curricular alignments (NC Science, Common Core Math)
Modeling of concepts mentioned in	6.E.1 earth/moon/sun system
science curricula to better understand or repurpose patterns found in nature	6.E.2 the earth's structure
in new designs	6.L.1.1 plant structures
	7.P.2.4 simple machines such as pulleys/levers
	7.L.1.1/7.L.1.2/Bio.1.1.1organisms and cells
	7.P.2.2 moving objects, energy transformation
	8.P.1.1 atomic structures
	8.E.2 fossil records and landforms
	Bio.3.1.1 DNA
	6.P.2.1/Chm.1.1.1/Chm.1.3.3 isotopes, ions, atoms, and atomic size
	Bio.4.1.1 molecules
Modeling of original designs in response to problem of interest	a biology student given the curricular topic of ecosystems, might identify the sub-problem of habitat destruction (Bio.2.2.1) and set about designing a replacement 3d printed habitat for an insect or bird threatened in urban areas
Design and analysis of 3d models made up of geometric shapes	6.G.4 represent 3d figures using nets made up of rectangles and triangles
	7.G.2 draw with technology geometric shapes
	7.G.3 describe 2d figures that result from slicing 3d figures

Curricular alignments with programmed robotics projects

(출처 : Oliver, K. M. (2016). Professional development considerations for makerspace leaders, part one: Addressing "what?" and "why?". *TechTrends*, 60(2), 160-166.)

CURRICULUM IN THE MAKERSPACE

- 형식-비형식 교육의 갭을 줄일 수 있는 메이커 스페이스 운영 전략 필요
 - 상호간의 문맥을 파악하고,서로 다른 상황의 교수자 및 스태프가 교차적으로 운영에 참여하여 책임 공유 및 역할을 명확화 해야 함
 - 교사가 제작한 콘텐츠를 메이커 프로젝트에 적용 및 홍보가 가능하다는 점을 알리고 가 치를 인식시켜야 함
 - 온오프라인 및 학교,지역 "커뮤니티"를 통해 다양한 메이커 활동과 커리큘럼을 지원해 야 함

DESIGNING THE MAKERSPACE

 Makerspace is less about "space" and more about the interest-driven learning and community-based sharing wherever that may take place

공간	예시
Zone	 Campfire: area to gather for expert presentation Watering hole: area to convene for collaborative work Cave: area to retreat for individual activity or reflection whiteboard space for collaboration Display space
Facility	Wi-Fi, electronical outlets, water for cleanup
Storage	Grab-and-go open shelf space, bins with lids, lockable rooms for expensive equipment

SUSTAINING THE MAKERSPACE

- 메이커스페이스의 참여자, 지원자, 전문가, 기부금과 지원액 마련을 위한 전략 확보 가 필요함
 - 홍보채널 마련 : 소셜미디어, YouTube, Twitter 를 통해 메이커스페이스의 산출물을 보여 줄 수 있는 비디오 및 이미지 등을 게시
 - 홍보 유인물 만들기 활동을 통해 학생들에게 직접적으로 메이커스페이스의 홍보 활동 참여 촉진
 - Mentor Pool 마련 : 참여자들의 작품 전시 공간, 교사 대상 메이커스페이스 교육이 가능한 전문가 확보, advanced teens 들의 자발적 멘토/멘티 참여
 - 기부금 마련 : 커뮤니티 및 학부모에게 요청, 학생들의 산출물 판매, 크라우드펀딩 캠페 인

FACILITATION IN THE MAKERSPACE - PROCESS

• 학습자들에게 Design-Make-Share 의 과정을 따르도록 지도가 필요함

Identifying and using research to understand a challenge or problem worthy of solving

Designing and ideating with sketches or digital CAD drawings

Prototyping based on design plans

Testing with analysis of feedback and reflection on improving a design

Sharing designs with one's local maker community, at regional maker faires, or in published maker outlets

FACILITATION IN THE MAKERSPACE - FACILITATOR STRATEGIES

Questioning

• 답이 있는 질문이 아닌 "What if," "Does this always happen" 과 같은 질문을 통해 현상을 이해하고 자신의 견해를 발전시키도록 촉진

Routines

• 학습자가 자신의 산출물에 대한 생각을 지속적으로 촉진할 수 있 도록 Routine을 개발 ex)"I noticed that" 등을 묻는 질문카드게임

Design meetings

• 커뮤니티 중심 메이커스페이스,학생-학생 간의 협력 촉진을 위한 meeting 을 설계

ASSESSMENT IN THE MAKERSPACE

- 메이커스페이스 프로젝트에서 평가할 수 있는 역량을 파악해야 함
 - Hard skills (working with tools and manipulating materials)
 - Soft skills (pursuing interests, staying committed through trial and failure, effort)
 - Application of the design process (questioning, prototyping)
 - Craftsmanship in making
 - Community building (collaborates with peers, cleans up)
 - Content understanding when applicable
- 평가 도구들
 - Portfolio WordPress, Wix, Tumblr, MakerEd
 - Written data Reflection, Observational data

REFERENCES

- Oliver, K. M. (2016). Professional development considerations for makerspace leaders, part one: Addressing "what?" and "why?". *TechTrends*, 60(2), 160-166.
- Oliver, K. M. (2016). Professional development considerations for makerspace leaders, part two: Addressing "how?". *TechTrends*, 60(3), 211-217.

감사합니다